
The Reversible 
Residual Network

Aidan Gomez, Mengye Ren, Raquel Urtasun and 
Roger Grosse



What are Deep Neural 
Networks (DNNs)?

• A ‘deep’ composition of 
functions.


• Generally, each function is 
parametrized by some weights 


• These weights can then be 
augmented to manipulate the 
computation being performed.

Single layer of an MLP

Convolution
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Training Gets Expensive

• The observation in deep networks is: `deep = better`


• Modern networks can have hundreds of layers each with 
large activation maps


• GPUs tend to have 8-16GB in memory and are easily 
exhausted by high dimensional data.



Residual Networks 
(ResNets)

• Class of layer originally 
developed for vision tasks 


• Learns a perturbation of its 
input.


• Extremely successful in 
multiple domains: vision, text 
and audio.



Reversible Residual 
Networks

• By partitioning the graph and 
learning a pair of residuals we 
can enable exact 
reconstruction of inputs.


• Given a large stack of these 
layers, preserving activations 
is no longer necessary.


• Simply reconstruct activations 
from outputs during 
backprop.
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Results

• No noticeable loss in performance


• Massive gains in network depths (~600 vs ~100 layers on ImageNet, using a 
single GPU)


• 4x increase in batch size (128 vs 32)


• only 1.5x the runtime cost of normal training (in practice, sometimes even less)



Future Work

• Recurrent Neural Networks


• Application to tasks requiring large activation maps (image 
segmentation, video, etc.)


• Implement your network within our codebase!  
github.com/renmengye/revnet-public  


