
The Reversible
Residual Network

Aidan Gomez, Mengye Ren, Raquel Urtasun and
Roger Grosse

What are Deep Neural
Networks (DNNs)?

• A ‘deep’ composition of
functions.

• Generally, each function is
parametrized by some weights

• These weights can then be
augmented to manipulate the
computation being performed.

Single layer of an MLP

Convolution

Training DNNs

• Network weights are updated using
‘gradient descent’

• Take steps in local direction of
steepest descent in the loss

Image: (Goh, 2017)

Training DNNs
• Network weights are updated using

‘gradient descent’

• Take steps in local direction of
steepest descent in the loss

• Chain-rule expansion can be
recursively computed using algorithm
known as backpropagation

Training DNNs
• Chain-rule expansion can be

recursively computed using algorithm
known as backpropagation

• ‘Backprop’ occurs in two steps:

• A forward pass that computes the
output of each layer.

• A backward pass the competes the
gradients of each layer.

• The partial derivates w.r.t. the weights of
each layer rely on the gradients of layer
outputs, and the inputs to the layer.

• The consequence is the need for storing
all layer activations at each

f2

f1

L

Data

Training DNNs
• Chain-rule expansion can be

recursively computed using algorithm
known as backpropagation

• ‘Backprop’ occurs in two steps:

• A forward pass that computes the
output of each layer.

• A backward pass the competes the
gradients of each layer.

• The partial derivates w.r.t. the weights of
each layer rely on the gradients of layer
outputs, and the inputs to the layer.

• The consequence is the need for storing
all layer activations at each

f2

f1

L

Data

Training DNNs
• Chain-rule expansion can be

recursively computed using algorithm
known as backpropagation

• ‘Backprop’ occurs in two steps:

• A forward pass that computes the
output of each layer.

• A backward pass the competes the
gradients of each layer.

• The partial derivates w.r.t. the weights of
each layer rely on the gradients of layer
outputs, and the inputs to the layer.

• The consequence is the need for storing
all layer activations at each

f2

f1

L

Data

Training DNNs
• Chain-rule expansion can be

recursively computed using algorithm
known as backpropagation

• ‘Backprop’ occurs in two steps:

• A forward pass that computes the
output of each layer.

• A backward pass the competes the
gradients of each layer.

• The partial derivates w.r.t. the weights of
each layer rely on the gradients of layer
outputs, and the inputs to the layer.

• The consequence is the need for storing
all layer activations at each

f2

f1

L

Data

Training DNNs
• Chain-rule expansion can be

recursively computed using algorithm
known as backpropagation

• ‘Backprop’ occurs in two steps:

• A forward pass that computes the
output of each layer.

• A backward pass the competes the
gradients of each layer.

• The partial derivates w.r.t. the weights of
each layer rely on the gradients of layer
outputs, and the inputs to the layer.

• The consequence is the need for storing
all layer activations at each

f2

f1

L

Data

Training DNNs
• Chain-rule expansion can be

recursively computed using algorithm
known as backpropagation

• ‘Backprop’ occurs in two steps:

• A forward pass that computes the
output of each layer.

• A backward pass the competes the
gradients of each layer.

• The partial derivates w.r.t. the weights of
each layer rely on the gradients of layer
outputs, and the inputs to the layer.

• The consequence is the need for storing
all layer activations at each

f2

f1

L

Data

Training DNNs
• Chain-rule expansion can be

recursively computed using algorithm
known as backpropagation

• ‘Backprop’ occurs in two steps:

• A forward pass that computes the
output of each layer.

• A backward pass the competes the
gradients of each layer.

• The partial derivates w.r.t. the weights of
each layer rely on the gradients of layer
outputs, and the inputs to the layer.

• The consequence is the need for storing
all layer activations at each

f2

f1

L

Data

Training Gets Expensive

• The observation in deep networks is: `deep = better`

• Modern networks can have hundreds of layers each with
large activation maps

• GPUs tend to have 8-16GB in memory and are easily
exhausted by high dimensional data.

Residual Networks
(ResNets)

• Class of layer originally
developed for vision tasks

• Learns a perturbation of its
input.

• Extremely successful in
multiple domains: vision, text
and audio.

Reversible Residual
Networks

• By partitioning the graph and
learning a pair of residuals we
can enable exact
reconstruction of inputs.

• Given a large stack of these
layers, preserving activations
is no longer necessary.

• Simply reconstruct activations
from outputs during
backprop.

Reversible Residual
Networks (RevNet)

fn

f1

L

Data

∇fn

∇f1

∇L

∇Data

Forward Backward

… … ……

Reversible Residual
Networks (RevNet)

fn

f1

L

Data

∇fn

∇f1

∇L

∇Data

Forward Backward

… … ……

Reversible Residual
Networks (RevNet)

fn

f1

L

Data

∇fn

∇f1

∇L

∇Data

Forward Backward

… … …… …

Results

• No noticeable loss in performance

• Massive gains in network depths (~600 vs ~100 layers on ImageNet, using a
single GPU)

• 4x increase in batch size (128 vs 32)

• only 1.5x the runtime cost of normal training (in practice, sometimes even less)

Future Work

• Recurrent Neural Networks

• Application to tasks requiring large activation maps (image
segmentation, video, etc.)

• Implement your network within our codebase!  
github.com/renmengye/revnet-public

