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What are Deep Neural
Networks (DNNs)?

e A ‘deep’ composition of f1 O fQ O...0 fn
functions.
e Generally, each function is Single layer of an MLP

parametrized by some weights fk ( T, Wfk ) — Sp(WfT :p)
k

 These weights can then be

augmented to manipulate the o
computation being performed. Sk (:IJ, Wfk) — 90(33 * Wfk)

Convolution



Training DNNs

Starting Point

Optilmum
Solution
Image: (Goh, 2017)
* Network weights are updated using O O O
‘gradient descent’ f 1 f 2 f n
* Take steps in local direction of I — LOSS(f1 o0 f y)
T A%,

steepest descent in the loss
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Training DNNs

Chain-rule expansion can be
recursively computed using algorithm
known as backpropagation

‘Backprop’ occurs in two steps:

* A forward pass that computes the
output of each layer.

* A backward pass the competes the
gradients of each layer.

The partial derivates w.r.t. the weights of
each layer rely on the gradients of layer
outputs, and the inputs to the layer.

The consequence is the need for storing
all layer activations at each
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Training Gets Expensive

e The observation in deep networks is: deep = better

e Modern networks can have hundreds of layers each with
large activation maps

e GPUs tend to have 8-16GB in memory and are easily
exhausted by high dimensional data.



Residual Networks
(ResNets)

e Class of layer originally
developed for vision tasks

* | earns a perturbation of its
iInput.

* Extremely successful in
multiple domains: vision, text
and audio.



Reversible Residual
Networks

e X, (> Y-
e By partitioning the graph and
learning a pair of residuals we e e
can enable exact
reconstruction of inputs. & D i
_ Yy = x1 + F(x2)
» Given a large stack of these vy = T2+ Gy1)
layers, preserving activations
IS no longer necessary. X, < Yo
e Simply reconstruct activations
from outputs during X, Y,

backprop.
PIoP xz:yz—g(yl)

r1 =1y — F(z2)



Reversible Residual
Networks (RevNet)
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Results

CIFAR-10 [15] CIFAR-100 [15]
ResNet RevNet ResNet RevNet

32 (38) 714%  7.24% 29.95%  28.96 %
110 5.74%  5.76% 26.44%  25.40%
164 524%  5.17% 23.37%  23.69%

Architecture

ResNet-101 RevNet-104
23.01% 23.10%

No noticeable loss in performance

Massive gains in network depths (~600 vs ~100 layers on ImageNet, using a
single GPU)

4x increase in batch size (128 vs 32)

only 1.5x the runtime cost of normal training (in practice, sometimes even less)



Future Work

e Recurrent Neural Networks

e Application to tasks requiring large activation maps (image
segmentation, video, etc.)

* |mplement your network within our codebase!
github.com/renmengye/revnet-public



