
Targeted Dropout
Aidan Gomez


In collaboration with: 

Ivan Zhang, Kevin Swersky, Yarin Gal, Geoff Hinton



Neural Networks

fj(x) = ϕ(∑
i

Wj,i ⋅ xi)

x

f

Briefly:  
A neural network is a composition of functions (layers) 
similar to f(x) below.

W



Targeted Dropout 
Sparsification



Immense Redundancy

• Neural networks are typically 
drastically over-
parameterized.


• Yet, this seems necessary to 
facilitate training.


• Ideally, we’d like to be able to 
remove as much of this 
redundancy as possible. 
How?



Identifying Important 
Subnetworks

• We want to remove portions of our networks; But, which 
portion?


• We need some measure for determining importance


• Judging weight importance may appear to be a complicated 
matter:


• many subsets of our network to choose from 
(combinatorial explosion)


• measuring subset importance can be extremely 
expensive



Evaluating Importance

Θ
d
H

Network parameter vector

Deletion vector (           for deletion, 0s elsewhere)

Hessian of loss

Idea:  
Look at a Taylor expansion of the change in loss after 
deleting a subset “d” of the network

LeCun et al. (1990)

di = Θi

ℒ(Θ) − ℒ(Θ − d) ≈ −∇Θℒ⊤ ⋅ d + 0.5 d⊤Hd + O(∥d∥3)
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Evaluating Importance
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enormous 

Idea:  
Look at a Taylor expansion of the change in loss after 
deleting a subset “d” of the network

LeCun et al. (1990)
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Evaluating Importance
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Evaluating Importance
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Evaluating Importance
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Evaluating Importance
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Evaluating Importance

ℒ(Θ) − ℒ(Θ − d) ≈ −∇Θℒ⊤ ⋅ d + 0.5 d⊤Hd + O(∥d∥3)

00

0

0

1

1

1 1 Θ1
∂ℒ

∂Θ1∂Θ1
Θ1 Θ2

∂ℒ
∂Θ1∂Θ2

Θ1 Θ3
∂ℒ

∂Θ1∂Θ3
Θ1 Θ4

∂ℒ
∂Θ1∂Θ4

Θ1

Θ4
∂ℒ

∂Θ2∂Θ4
Θ2Θ3

∂ℒ
∂Θ2∂Θ3

Θ2Θ2
∂ℒ

∂Θ2∂Θ2
Θ2Θ1

∂ℒ
∂Θ2∂Θ1

Θ2

Θ1
∂ℒ

∂Θ3∂Θ1
Θ3 Θ2

∂ℒ
∂Θ3∂Θ2

Θ3 Θ3
∂ℒ

∂Θ3∂Θ3
Θ3

Θ2
∂ℒ

∂Θ4∂Θ2
Θ4Θ1

∂ℒ
∂Θ4∂Θ1

Θ4

Θ4
∂ℒ

∂Θ3∂Θ4
Θ3

Θ3
∂ℒ

∂Θ4∂Θ3
Θ4 Θ4

∂ℒ
∂Θ4∂Θ4

Θ4

b⊤(Θ⊤ ⊙ H ⊙ Θ)b



Visualizing Importance

• We can test our 
assumptions by inspecting 
the coadaptation matrix


• Position (i, j) of the matrix 
represents the 
dependence of parameter i 
on parameter j.


•  Pruning a set of weights  
 {l, m, n, …} will change 
the loss proportional to the 
sum of the l, m, and nth 
columns [Θ⊤ ⊙ H ⊙ Θ]i, j

= Θi ⊙ Hi, j ⊙ Θj

Big Small
Big

Small



Visualizing Importance

• First 25% of weights are 
those with the largest 
magnitude.


• Remaining 75% are those 
we intend to prune.


• We hope that very little 
importance is placed on the 
75% deemed unimportant.


• Ideally, all importance 
would be concentrated in 
the top-left 16th 

Big Small
Big

Small

[Θ⊤ ⊙ H ⊙ Θ]i, j
= Θi ⊙ Hi, j ⊙ Θj



Unregularized Model

• First 25% of weights are 
those with the largest 
magnitude.


• Remaining 75% are those 
we intend to prune.


• We hope that very little 
importance is placed on the 
75% deemed unimportant.


• Ideally, all importance 
would be concentrated in 
the top-left 16th 

Big Small
Big

Small

[Θ⊤ ⊙ H ⊙ Θ]i, j
= Θi ⊙ Hi, j ⊙ Θj



Simplifying Assumptions

• It’s clear that some 
simplifications are necessary:


• Assume group/weight-wise 
independence


• Assume a first order approx. 
is “good enough”


• Assume a zeroth order 
approx. is “good enough”



Simplifying Assumptions

• It’s clear that some 
simplifications are necessary:


• Assume group/weight-wise 
independence


• Assume a first order approx. 
is “good enough”


• Assume a zeroth order 
approx. is “good enough”

Saves computing the full Hessian, 
much less the many Hessian-
vector products originally required.


Now we need only compute a 
block-diagonal or diagonal 
approximation.


This technique is known as 
Optimal Brain Damage (LeCun et 
al., 1990)



Simplifying Assumptions

• It’s clear that some 
simplifications are necessary:


• Assume group/weight-wise 
independence


• Assume a first order approx. 
is “good enough”


• Assume a zeroth order 
approx. is “good enough”

Despite the claim on a previous slide 
that                , Pavlo Molchanov and 
colleagues suggest that:


• yes,                is uninformative 
in expectation, but…


• the variance of this quantity 
correlates with the local 
stability of the loss, and


• we have access to this 
variance since 

∇Θℒ → 0

∇Θℒ ⋅ d⊤

𝔼[ |∇Θℒ ⋅ d⊤ | ] ∝ σ

Molchanov et al. (2017)



Simplifying Assumptions

• It’s clear that some 
simplifications are necessary:


• Assume group/weight-wise 
independence


• Assume a first order approx. 
is “good enough”


• Assume a zeroth order 
approx. is “good enough”

Assume that one can judge the 
importance of a weight by its 
magnitude.


In practice this works quite well.


But far from perfect…


probably: Rumelhart (1988)



Targeted Dropout

Idea: Inspired by Hinton’s description of dropout reducing 
coadaptation between units, use dropout to reduce dependance of 
the identified important subnetwork on its complement in the 
network.
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Targeted Dropout

Compute magnitudes

Idea: Inspired by Hinton’s description of dropout reducing 
coadaptation between units, use dropout to reduce dependance of 
the identified important subnetwork on its complement in the 
network.



Targeted Dropout

Apply dropout to only the smallest k%

Idea: Inspired by Hinton’s description of dropout reducing 
coadaptation between units, use dropout to reduce dependance of 
the identified important subnetwork on its complement in the 
network.



Targeted Dropout

After training delete 
those weights

Idea: Inspired by Hinton’s description of dropout reducing 
coadaptation between units, use dropout to reduce dependance of 
the identified important subnetwork on its complement in the 
network.



Targeted Dropout

Idea: Inspired by Hinton’s description of dropout reducing 
coadaptation between units, use dropout to reduce dependance of 
the identified important subnetwork on its complement in the 
network.



Targeted Dropout
def targeting_fn(inputs, k):  
  shape = tf.shape(inputs)  
  size = tf.to_int32(tf.reduce_prod(shape[:-1])) 
 
  inputs = tf.reshape(inputs, [size, shape[-1]])  
  transpose = tf.transpose(inputs)  
 
  thres = tf.contrib.framework.sort(tf.abs(transpose), axis=1)[:, k] 
  mask = tf.to_float(tf.abs(inputs) <= thres[None, :])  
 
  return tf.reshape(mask, shape)  
 
 
 
def targeted_dropout(inputs, targ_rate, keep_prob, is_training):  
  dim = tf.to_float(tf.shape(inputs)[-1])  
  k = tf.round(dim * targ_rate)  
 
  if not is_training and do_prune:  
    drop_rate = 1. - keep_prob 
    k = tf.round(dim * targ_rate * drop_rate) 

  mask = targeting_fn(inputs, k) 
  mask = tf.cast(mask, inputs.dtype) 

  if is_training: 
    return inputs * (1 - mask) + tf.nn.dropout(inputs, keep_prob) * mask 
  else: 
    return inputs * (1 - mask)



Unregularized Model

• First 25% of weights are 
those with the largest 
magnitude.


• Remaining 75% are those 
we intend to prune.


• We hope that very little 
importance is placed on the 
75% deemed unimportant.


• Ideally, all importance 
would be concentrated in 
the top-left 16th [Θ⊤ ⊙ H ⊙ Θ]i, j

= Θi ⊙ Hi, j ⊙ Θj



Targeted Dropout

• Targeted Dropout achieves 
precisely what we had hoped 
for: 


• decoupling the “important” 
sub-network from the 
“unimportant” one.

[Θ⊤ ⊙ H ⊙ Θ]i, j
= Θi ⊙ Hi, j ⊙ Θj
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sub-network from the 
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Weight-level Results

• We baseline against three recent techniques: L1 regularisation, 
variational dropout, and smallify (to come). Results on CIFAR-10 
using a ResNet-32.



Unit-level Results

• We baseline against three recent techniques: L1 regularisation, 
variational dropout, and smallify (to come). Results on CIFAR-10 
using a ResNet-32.



Ramping Results

• Idea: slowly ramp up the targeting proportion from 0% to some 
large percent (99% in our experiments)



Bitrot + Exprot 
Quantization



Numeric Representation

Sign 
1

Exponent 
8

Mantissa 
23

Single-precision floating-point (float32)

Sign 
1

Exponent 
8

Mantissa 
7

Truncated half-precision floating-point (bfloat16)

Sign 
1

Integer 
3

Fractional 
4

8-bit fixed-point (Q3.4)
−1sign ⋅ 2exp−127 ⋅ 1.mant
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Bitrot
Single-precision floating-point (float32)

Idea: Apply dropout to the bits of the mantissa in order to gradually 
anneal the network from a float32 to a bfloat16.



Bitrot
Single-precision floating-point (float32)

Idea: Apply dropout to the bits of the mantissa in order to gradually 
anneal the network from a float32 to a bfloat16.

Apply Nested Dropout

Rippel, Gelbart, and Adams. (2014)



Nested Dropout

Apply Nested Dropout

Rippel, Gelbart, and Adams. (2014)

Choose index i with probability: p(i) = ρi(1 − ρ)



Nested Dropout

Apply Nested Dropout

Rippel, Gelbart, and Adams. (2014)

Drop all lower order bits



Nested Dropout

Apply Nested Dropout

Rippel, Gelbart, and Adams. (2014)

Drop all lower order bits

Borrowing from ramping targeted dropout, instead 

of sampling indices, we simply anneal upwards


 from zero over the course of training.



Numeric Representation
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Exprot

8-bit fixed-point (Q3.4)

Our Q3.4 can’t represent any number with magnitude larger than              
or smaller than        (but greater than zero)

8 − 2−4

2−4

Idea: We can gradually constrain the exponents of our numbers to be 
as close to 0 as possible simply by minimizing                 and 
stochastically perturbing the exponent towards zero.

| log2(W ) |



Bitrot

def bitrot(inputs, targ_bits, keep_prob, is_training): 
  shifted = tf.bitwise.right_shift(inputs, targ_bits) 
  rotten = tf.bitwise.left_shift(shifted, targ_bits) 
 
  mask = tf.random_uniform(tf.shape(inputs)) <= keep_prob  
 
  if is_training: 
    return inputs * mask + rotten * (1 - mask) 
  else: 
    return rotten 

 
 
def exprot(inputs, exp_shift, keep_prob, is_training):  
  log2 = tf.log(inputs) / tf.log(2.)  
  shift = -tf.sign(log2) * tf.minimum(exp_shift, log2) 
  rotten = inputs * 2**(shift)  
 
  mask = tf.random_uniform(tf.shape(inputs)) <= keep_prob  
 
  if is_training: 
    return inputs * mask + rotten * (1 - mask), tf.abs(log2) 
  else: 
    return rotten 



Bitrot + Exprot Results

Acc.

Naive (float32) 93.48

Bitrot (4 mant.) 92.19
Bitrot (3 mant.) 87.37

Bitrot + Exprot (Q4.4) 93.36
Bitrot + Exprot (Q3.4) ~20.00

More to come! 🖤💜 
More precisely, much more in next couple months. 

Still, go give it a try yourself!



Conclusion

• Early pruning


• Better sparsity support

Keep and eye out for the full 
version of the Targeted Dropout 
paper in the coming weeks!


Check out for.ai for opportunities 
to get involved in ML projects!



