
Targeted Dropout
Aidan Gomez

In collaboration with:

Ivan Zhang, Kevin Swersky, Yarin Gal, Geoff Hinton

Neural Networks

fj(x) = ϕ(∑
i

Wj,i ⋅ xi)

x

f

Briefly:
A neural network is a composition of functions (layers)
similar to f(x) below.

W

Targeted Dropout
Sparsification

Immense Redundancy

• Neural networks are typically
drastically over-
parameterized.

• Yet, this seems necessary to
facilitate training.

• Ideally, we’d like to be able to
remove as much of this
redundancy as possible.
How?

Identifying Important
Subnetworks

• We want to remove portions of our networks; But, which
portion?

• We need some measure for determining importance

• Judging weight importance may appear to be a complicated
matter:

• many subsets of our network to choose from
(combinatorial explosion)

• measuring subset importance can be extremely
expensive

Evaluating Importance

Θ
d
H

Network parameter vector

Deletion vector (for deletion, 0s elsewhere)

Hessian of loss

Idea:
Look at a Taylor expansion of the change in loss after
deleting a subset “d” of the network

LeCun et al. (1990)

di = Θi

ℒ(Θ) − ℒ(Θ − d) ≈ −∇Θℒ⊤ ⋅ d + 0.5 d⊤Hd + O(∥d∥3)

Evaluating Importance

Θ
d
H

Network parameter vector

Deletion vector (for deletion, 0s elsewhere)

Hessian of loss

Idea:
Look at a Taylor expansion of the change in loss after
deleting a subset “d” of the network

vanishes

LeCun et al. (1990)

di = Θi

ℒ(Θ) − ℒ(Θ − d) ≈ −∇Θℒ⊤ ⋅ d + 0.5 d⊤Hd + O(∥d∥3)

Evaluating Importance

Θ
d
H

Network parameter vector

Deletion vector (for deletion, 0s elsewhere)

Hessian of loss}
enormous

Idea:
Look at a Taylor expansion of the change in loss after
deleting a subset “d” of the network

LeCun et al. (1990)

di = Θi

ℒ(Θ) − ℒ(Θ − d) ≈ −∇Θℒ⊤ ⋅ d + 0.5 d⊤Hd + O(∥d∥3)

Evaluating Importance

H =

∂ℒ
∂Θ1Θ1

∂ℒ
∂Θ1Θ2

. . .
∂ℒ

∂Θ2Θ1

∂ℒ
∂Θ2Θ2

. . .

⋮ ⋮ ⋱

d = [0 0 Θ3 0 Θ5 . . .]

ℒ(Θ) − ℒ(Θ − d) ≈ −∇Θℒ⊤ ⋅ d + 0.5 d⊤Hd + O(∥d∥3)

Evaluating Importance

∂ℒ
∂Θ1Θ1

∂ℒ
∂Θ1Θ2

. . .
∂ℒ

∂Θ2Θ1

∂ℒ
∂Θ2Θ2

. . .

⋮ ⋮ ⋱

Θ1 Θ2

Θ1

Θ2

ℒ(Θ) − ℒ(Θ − d) ≈ −∇Θℒ⊤ ⋅ d + 0.5 d⊤Hd + O(∥d∥3)

Evaluating Importance

∂ℒ
∂Θ2Θ2

∂ℒ
∂Θ2Θ1

. . .
∂ℒ

∂Θ1Θ2

∂ℒ
∂Θ1Θ1

. . .

⋮ ⋮ ⋱

Θ2 Θ1

Θ2

Θ1

ℒ(Θ) − ℒ(Θ − d) ≈ −∇Θℒ⊤ ⋅ d + 0.5 d⊤Hd + O(∥d∥3)

Evaluating Importance

Θ2Θ1

Θ2

Θ1

Θ3

Θ4

Θ3 Θ4

∂ℒ
∂Θ1∂Θ1

∂ℒ
∂Θ1∂Θ2

∂ℒ
∂Θ1∂Θ3

∂ℒ
∂Θ1∂Θ4

∂ℒ
∂Θ2∂Θ4

∂ℒ
∂Θ2∂Θ3

∂ℒ
∂Θ2∂Θ2

∂ℒ
∂Θ2∂Θ1

∂ℒ
∂Θ3∂Θ1

∂ℒ
∂Θ3∂Θ2

∂ℒ
∂Θ3∂Θ3

∂ℒ
∂Θ3∂Θ4

∂ℒ
∂Θ4∂Θ4

∂ℒ
∂Θ4∂Θ3

∂ℒ
∂Θ4∂Θ2

∂ℒ
∂Θ4∂Θ1

ℒ(Θ) − ℒ(Θ − d) ≈ −∇Θℒ⊤ ⋅ d + 0.5 d⊤Hd + O(∥d∥3)

Evaluating Importance

ℒ(Θ) − ℒ(Θ − d) ≈ −∇Θℒ⊤ ⋅ d + 0.5 d⊤Hd + O(∥d∥3)

00

0

0

Θ3

Θ4

Θ3 Θ4
∂ℒ

∂Θ1∂Θ1

∂ℒ
∂Θ1∂Θ2

∂ℒ
∂Θ1∂Θ3

∂ℒ
∂Θ1∂Θ4

∂ℒ
∂Θ2∂Θ4

∂ℒ
∂Θ2∂Θ3

∂ℒ
∂Θ2∂Θ2

∂ℒ
∂Θ2∂Θ1

∂ℒ
∂Θ3∂Θ1

∂ℒ
∂Θ3∂Θ2

∂ℒ
∂Θ3∂Θ3

∂ℒ
∂Θ3∂Θ4

∂ℒ
∂Θ4∂Θ4

∂ℒ
∂Θ4∂Θ3

∂ℒ
∂Θ4∂Θ2

∂ℒ
∂Θ4∂Θ1

d⊤Hd

Evaluating Importance

ℒ(Θ) − ℒ(Θ − d) ≈ −∇Θℒ⊤ ⋅ d + 0.5 d⊤Hd + O(∥d∥3)

00

0

0

1

1

1 1 0
∂ℒ

∂Θ1∂Θ1
0 0

∂ℒ
∂Θ1∂Θ2

0 Θ3
∂ℒ

∂Θ1∂Θ3
0 Θ4

∂ℒ
∂Θ1∂Θ4

0

Θ4
∂ℒ

∂Θ2∂Θ4
0Θ3

∂ℒ
∂Θ2∂Θ3

00
∂ℒ

∂Θ2∂Θ2
00

∂ℒ
∂Θ2∂Θ1

0

0
∂ℒ

∂Θ3∂Θ1
Θ3 0

∂ℒ
∂Θ3∂Θ2

Θ3 Θ3
∂ℒ

∂Θ3∂Θ3
Θ3

0
∂ℒ

∂Θ4∂Θ2
Θ40

∂ℒ
∂Θ4∂Θ1

Θ4

Θ4
∂ℒ

∂Θ3∂Θ4
Θ3

Θ3
∂ℒ

∂Θ4∂Θ3
Θ4 Θ4

∂ℒ
∂Θ4∂Θ4

Θ4

b⊤(d⊤ ⊙ H ⊙ d)b

Evaluating Importance

ℒ(Θ) − ℒ(Θ − d) ≈ −∇Θℒ⊤ ⋅ d + 0.5 d⊤Hd + O(∥d∥3)

00

0

0

1

1

1 1 0
∂ℒ

∂Θ1∂Θ1
0 0

∂ℒ
∂Θ1∂Θ2

0 Θ3
∂ℒ

∂Θ1∂Θ3
0 Θ4

∂ℒ
∂Θ1∂Θ4

0

Θ4
∂ℒ

∂Θ2∂Θ4
0Θ3

∂ℒ
∂Θ2∂Θ3

00
∂ℒ

∂Θ2∂Θ2
00

∂ℒ
∂Θ2∂Θ1

0

0
∂ℒ

∂Θ3∂Θ1
Θ3 0

∂ℒ
∂Θ3∂Θ2

Θ3 Θ3
∂ℒ

∂Θ3∂Θ3
Θ3

0
∂ℒ

∂Θ4∂Θ2
Θ40

∂ℒ
∂Θ4∂Θ1

Θ4

Θ4
∂ℒ

∂Θ3∂Θ4
Θ3

Θ3
∂ℒ

∂Θ4∂Θ3
Θ4 Θ4

∂ℒ
∂Θ4∂Θ4

Θ4

b⊤(d⊤ ⊙ H ⊙ d)b

Evaluating Importance

ℒ(Θ) − ℒ(Θ − d) ≈ −∇Θℒ⊤ ⋅ d + 0.5 d⊤Hd + O(∥d∥3)

00

0

0

1

1

1 1 Θ1
∂ℒ

∂Θ1∂Θ1
Θ1 Θ2

∂ℒ
∂Θ1∂Θ2

Θ1 Θ3
∂ℒ

∂Θ1∂Θ3
Θ1 Θ4

∂ℒ
∂Θ1∂Θ4

Θ1

Θ4
∂ℒ

∂Θ2∂Θ4
Θ2Θ3

∂ℒ
∂Θ2∂Θ3

Θ2Θ2
∂ℒ

∂Θ2∂Θ2
Θ2Θ1

∂ℒ
∂Θ2∂Θ1

Θ2

Θ1
∂ℒ

∂Θ3∂Θ1
Θ3 Θ2

∂ℒ
∂Θ3∂Θ2

Θ3 Θ3
∂ℒ

∂Θ3∂Θ3
Θ3

Θ2
∂ℒ

∂Θ4∂Θ2
Θ4Θ1

∂ℒ
∂Θ4∂Θ1

Θ4

Θ4
∂ℒ

∂Θ3∂Θ4
Θ3

Θ3
∂ℒ

∂Θ4∂Θ3
Θ4 Θ4

∂ℒ
∂Θ4∂Θ4

Θ4

b⊤(Θ⊤ ⊙ H ⊙ Θ)b

Visualizing Importance

• We can test our
assumptions by inspecting
the coadaptation matrix

• Position (i, j) of the matrix
represents the
dependence of parameter i
on parameter j.

• Pruning a set of weights  
 {l, m, n, …} will change
the loss proportional to the
sum of the l, m, and nth
columns [Θ⊤ ⊙ H ⊙ Θ]i, j

= Θi ⊙ Hi, j ⊙ Θj

Big Small
Big

Small

Visualizing Importance

• First 25% of weights are
those with the largest
magnitude.

• Remaining 75% are those
we intend to prune.

• We hope that very little
importance is placed on the
75% deemed unimportant.

• Ideally, all importance
would be concentrated in
the top-left 16th

Big Small
Big

Small

[Θ⊤ ⊙ H ⊙ Θ]i, j
= Θi ⊙ Hi, j ⊙ Θj

Unregularized Model

• First 25% of weights are
those with the largest
magnitude.

• Remaining 75% are those
we intend to prune.

• We hope that very little
importance is placed on the
75% deemed unimportant.

• Ideally, all importance
would be concentrated in
the top-left 16th

Big Small
Big

Small

[Θ⊤ ⊙ H ⊙ Θ]i, j
= Θi ⊙ Hi, j ⊙ Θj

Simplifying Assumptions

• It’s clear that some
simplifications are necessary:

• Assume group/weight-wise
independence

• Assume a first order approx.
is “good enough”

• Assume a zeroth order
approx. is “good enough”

Simplifying Assumptions

• It’s clear that some
simplifications are necessary:

• Assume group/weight-wise
independence

• Assume a first order approx.
is “good enough”

• Assume a zeroth order
approx. is “good enough”

Saves computing the full Hessian,
much less the many Hessian-
vector products originally required.

Now we need only compute a
block-diagonal or diagonal
approximation.

This technique is known as
Optimal Brain Damage (LeCun et
al., 1990)

Simplifying Assumptions

• It’s clear that some
simplifications are necessary:

• Assume group/weight-wise
independence

• Assume a first order approx.
is “good enough”

• Assume a zeroth order
approx. is “good enough”

Despite the claim on a previous slide
that , Pavlo Molchanov and
colleagues suggest that:

• yes, is uninformative
in expectation, but…

• the variance of this quantity
correlates with the local
stability of the loss, and

• we have access to this
variance since

∇Θℒ → 0

∇Θℒ ⋅ d⊤

𝔼[|∇Θℒ ⋅ d⊤ |] ∝ σ

Molchanov et al. (2017)

Simplifying Assumptions

• It’s clear that some
simplifications are necessary:

• Assume group/weight-wise
independence

• Assume a first order approx.
is “good enough”

• Assume a zeroth order
approx. is “good enough”

Assume that one can judge the
importance of a weight by its
magnitude.

In practice this works quite well.

But far from perfect…

probably: Rumelhart (1988)

Targeted Dropout

Idea: Inspired by Hinton’s description of dropout reducing
coadaptation between units, use dropout to reduce dependance of
the identified important subnetwork on its complement in the
network.

Targeted Dropout

Idea: Inspired by Hinton’s description of dropout reducing
coadaptation between units, use dropout to reduce dependance of
the identified important subnetwork on its complement in the
network.

Targeted Dropout

Compute magnitudes

Idea: Inspired by Hinton’s description of dropout reducing
coadaptation between units, use dropout to reduce dependance of
the identified important subnetwork on its complement in the
network.

Targeted Dropout

Apply dropout to only the smallest k%

Idea: Inspired by Hinton’s description of dropout reducing
coadaptation between units, use dropout to reduce dependance of
the identified important subnetwork on its complement in the
network.

Targeted Dropout

After training delete
those weights

Idea: Inspired by Hinton’s description of dropout reducing
coadaptation between units, use dropout to reduce dependance of
the identified important subnetwork on its complement in the
network.

Targeted Dropout

Idea: Inspired by Hinton’s description of dropout reducing
coadaptation between units, use dropout to reduce dependance of
the identified important subnetwork on its complement in the
network.

Targeted Dropout
def targeting_fn(inputs, k):  
 shape = tf.shape(inputs)  
 size = tf.to_int32(tf.reduce_prod(shape[:-1])) 
 
 inputs = tf.reshape(inputs, [size, shape[-1]])  
 transpose = tf.transpose(inputs)  
 
 thres = tf.contrib.framework.sort(tf.abs(transpose), axis=1)[:, k] 
 mask = tf.to_float(tf.abs(inputs) <= thres[None, :])  
 
 return tf.reshape(mask, shape)  
 
 
 
def targeted_dropout(inputs, targ_rate, keep_prob, is_training):  
 dim = tf.to_float(tf.shape(inputs)[-1])  
 k = tf.round(dim * targ_rate)  
 
 if not is_training and do_prune:  
 drop_rate = 1. - keep_prob
 k = tf.round(dim * targ_rate * drop_rate)

 mask = targeting_fn(inputs, k)
 mask = tf.cast(mask, inputs.dtype)

 if is_training:
 return inputs * (1 - mask) + tf.nn.dropout(inputs, keep_prob) * mask
 else:
 return inputs * (1 - mask)

Unregularized Model

• First 25% of weights are
those with the largest
magnitude.

• Remaining 75% are those
we intend to prune.

• We hope that very little
importance is placed on the
75% deemed unimportant.

• Ideally, all importance
would be concentrated in
the top-left 16th [Θ⊤ ⊙ H ⊙ Θ]i, j

= Θi ⊙ Hi, j ⊙ Θj

Targeted Dropout

• Targeted Dropout achieves
precisely what we had hoped
for:

• decoupling the “important”
sub-network from the
“unimportant” one.

[Θ⊤ ⊙ H ⊙ Θ]i, j
= Θi ⊙ Hi, j ⊙ Θj

Targeted Dropout

• Targeted Dropout achieves
precisely what we had hoped
for:

• decoupling the “important”
sub-network from the
“unimportant” one.

[Θ⊤ ⊙ H ⊙ Θ]i, j
= Θi ⊙ Hi, j ⊙ Θj

Weight-level Results

• We baseline against three recent techniques: L1 regularisation,
variational dropout, and smallify (to come). Results on CIFAR-10
using a ResNet-32.

Unit-level Results

• We baseline against three recent techniques: L1 regularisation,
variational dropout, and smallify (to come). Results on CIFAR-10
using a ResNet-32.

Ramping Results

• Idea: slowly ramp up the targeting proportion from 0% to some
large percent (99% in our experiments)

Bitrot + Exprot
Quantization

Numeric Representation

Sign
1

Exponent
8

Mantissa
23

Single-precision floating-point (float32)

Sign
1

Exponent
8

Mantissa
7

Truncated half-precision floating-point (bfloat16)

Sign
1

Integer
3

Fractional
4

8-bit fixed-point (Q3.4)
−1sign ⋅ 2exp−127 ⋅ 1.mant

Numeric Representation

Sign
1

Exponent
8

Mantissa
23

Single-precision floating-point (float32)

Sign
1

Exponent
8

Mantissa
7

Truncated half-precision floating-point (bfloat16)

Sign
1

Integer
3

Fractional
4

8-bit fixed-point (Q3.4)
−1sign ⋅ 2exp−127 ⋅ 1.mant

Numeric Representation

Sign
1

Integer
3

Fractional
4

8-bit fixed-point (Q3.4)

Sign
1

Exponent
8

Mantissa
23

Single-precision floating-point (float32)

Sign
1

Exponent
8

Mantissa
7

Truncated half-precision floating-point (bfloat16)

−1sign ⋅ int . frac

Bitrot
Single-precision floating-point (float32)

Idea: Apply dropout to the bits of the mantissa in order to gradually
anneal the network from a float32 to a bfloat16.

Bitrot
Single-precision floating-point (float32)

Idea: Apply dropout to the bits of the mantissa in order to gradually
anneal the network from a float32 to a bfloat16.

Apply Nested Dropout

Rippel, Gelbart, and Adams. (2014)

Nested Dropout

Apply Nested Dropout

Rippel, Gelbart, and Adams. (2014)

Choose index i with probability: p(i) = ρi(1 − ρ)

Nested Dropout

Apply Nested Dropout

Rippel, Gelbart, and Adams. (2014)

Drop all lower order bits

Nested Dropout

Apply Nested Dropout

Rippel, Gelbart, and Adams. (2014)

Drop all lower order bits

Borrowing from ramping targeted dropout, instead

of sampling indices, we simply anneal upwards

 from zero over the course of training.

Numeric Representation

Sign
1

Integer
3

Fractional
4

8-bit fixed-point (Q3.4)

Sign
1

Exponent
8

Mantissa
23

Single-precision floating-point (float32)

Sign
1

Exponent
8

Mantissa
7

Truncated half-precision floating-point (bfloat16)

−1sign ⋅ int . frac

Exprot

8-bit fixed-point (Q3.4)

Our Q3.4 can’t represent any number with magnitude larger than
or smaller than (but greater than zero)

8 − 2−4

2−4

Idea: We can gradually constrain the exponents of our numbers to be
as close to 0 as possible simply by minimizing and
stochastically perturbing the exponent towards zero.

| log2(W) |

Bitrot

def bitrot(inputs, targ_bits, keep_prob, is_training):
 shifted = tf.bitwise.right_shift(inputs, targ_bits)
 rotten = tf.bitwise.left_shift(shifted, targ_bits)
 
 mask = tf.random_uniform(tf.shape(inputs)) <= keep_prob  
 
 if is_training:
 return inputs * mask + rotten * (1 - mask)
 else:
 return rotten

 
 
def exprot(inputs, exp_shift, keep_prob, is_training):  
 log2 = tf.log(inputs) / tf.log(2.)  
 shift = -tf.sign(log2) * tf.minimum(exp_shift, log2)
 rotten = inputs * 2**(shift)  
 
 mask = tf.random_uniform(tf.shape(inputs)) <= keep_prob  
 
 if is_training:
 return inputs * mask + rotten * (1 - mask), tf.abs(log2)
 else:
 return rotten

Bitrot + Exprot Results

Acc.

Naive (float32) 93.48

Bitrot (4 mant.) 92.19
Bitrot (3 mant.) 87.37

Bitrot + Exprot (Q4.4) 93.36
Bitrot + Exprot (Q3.4) ~20.00

More to come! 🖤💜 
More precisely, much more in next couple months. 

Still, go give it a try yourself!

Conclusion

• Early pruning

• Better sparsity support

Keep and eye out for the full
version of the Targeted Dropout
paper in the coming weeks!

Check out for.ai for opportunities
to get involved in ML projects!

